Compression Bases in Unital Groups

David J. Foulis¹

We introduce and launch a study of compression bases in unital groups. The family of all compressions on a compressible group and the family of all direct compressions on a unital group are examples of compression bases. In this article we show that the properties of the compatibility relation in a compressible group generalize to unital groups with compression bases.

KEY WORDS: normal sub-effect algebra; compatibility; unital group; compression; compressible group; compression base.

PACS Classification Primary 03.65.Fd. Secondary 02.30 Tb. **AMS Classification:** Primary 06F20. Secondary 47A20.

1. NORMAL SUB-EFFECT ALGEBRAS

If *E* is an effect algebra (Foulis and Bennett, 1994), then a *Mackey decomposition* in *E* of the ordered pair $(e, f) \in E \times E$ is an ordered triple $(e_1, f_1, d) \in$ $E \times E \times E$ such that $e_1 \perp f_1$, $(e_1 \oplus f_1) \perp d$, $e = e_1 \oplus d$, and $f = f_1 \oplus d$. If there exists a Mackey decomposition in *E* of $(e, f) \in E \times E$, then *e* and *f* are said to be *Mackey compatible* in *E*.

Definition 1. Let *P* be a sub-effect algebra of the effect algebra *E* (Foulis and Bennett, 1994, Definition 2.6). Then *P* is a *normal* sub-effect algebra of *E* iff, for all $e, f \in P$, if $(e_1, f_1, d) \in E \times E \times E$ is a Mackey decomposition in *E* of (e, f) , then $d \in P$.

Suppose that *E* is an effect algebra, *P* is a sub-effect algebra of $E, e, f \in P$, and $(e_1, f_1, d) \in E \times E \times E$ is a Mackey decomposition of (e, f) in *E*. Then *e* and *f* are Mackey compatible in *E*, but not necessarily in *P*. However, if *P* is a normal sub-effect algebra of *E*, then $d \in P$ and, since $e_1 \oplus d = e$, $f_1 \oplus d = f$, and *d*, *e*, *f* \in *P*, it follows that *e*₁, *f*₁ \in *P*, whence $(e_1, f_1, d) \in$ *P* \times *P* \times *P* is a Mackey decomposition in *P* of (*e,f*). Therefore, *if P is a normal sub-effect*

¹ University of Massachusetts, 1 Sutton Court, Amherst, MA 01002, USA; e-mail: foulis@ math.umass.edu

algebra of E *and* $e, f \in P$ *, then* e *and* f *are Mackey compatible in* E *iff* e *and* f *are Mackey compatible in P.*

Example 1. The center of an effect algebra *E* (Greechie *et al.*, 1995) is a normal sub-effect algebra of *E*.

Recall that *G* is a *unital group* with *unit u* and *unit interval E* iff *G* is a directed partially ordered abelian group (Goodearl, 1986), such that $u \in G^+ :=$ ${g \in G \mid 0 \le g}, E := {e \in G \mid 0 \le e \le u}, \text{ and every element } g \in G^+ \text{ can be}$ written as $g = \sum_{i=1}^{n} e_i$ with $e_i \in E$ for $i = 1, 2, ..., n$ (Foulis, 2003, p. 436). (The $symbol :=$ means "equals by definition.")

Suppose that *G* is a unital group with unit *u* and unit interval *E*. Then *E* is an effect algebra with unit *u* under the partially defined binary operation $oplus$ obtained be restriction of + on *G* to *E* (Bennett and Foulis, 1997). We note that a sub-effect algebra *P* of *E* is a normal sub-effect algebra of *E* iff, for all *e*, $f, d \in E$ with $e + f + d \le u$, we have $e + d$, $f + d \in P \Rightarrow d \in P$.

Example 2. Let \mathfrak{H} be a Hilbert space. Then the additive abelian group \mathbb{G} of all bounded self-adjoint operators on \mathfrak{H} , partially ordered in the usual way, is a unital group with unit 1. The unit interval $\mathbb E$ in $\mathbb G$ is the standard effect algebra of all effect operators on \mathfrak{H} , and the orthomodular lattice $\mathbb P$ of all projection operators on $\mathfrak H$ is a normal sub-effect algebra of $\mathbb E$.

2. RETRACTIONS AND COMPRESSIONS

Let *G* be a unital group with unit *u* and unit interval *E*. A *retraction* on *G* with *focus p* is defined to be an order-preserving group endomorphism $J: G \rightarrow G$ with $p = J(u) \in E$ such that, for all $e \in E$, $e \le p \Rightarrow J(e) = e$. A retraction *J* on *G* with focus *p* is called a *compression* on *G* iff $J(e) = 0 \Rightarrow e \le u - p$ holds for all $e \in E$ (Foulis, 2004).

The unital group *G* always admits at least two compressions, namely the zero mapping, $g \mapsto 0$ for all $g \in G$ and the identity mapping $g \mapsto g$ for all $g \in G$. Suppose *J* is a retraction with focus *p* on *G*. Then, *J* is idempotent (i.e., $J \circ J = J$ and $J(p) = p$. Also, for all $e \in E$, $e \le u - p \Rightarrow J(e) = 0$ and, if *J* is a compression, then $e \le u - p \Leftrightarrow J(e) = 0$ (Foulis, 2004).

Lemma 1. *Let G be a unital group with unit u and unit interval E. Suppose that J is a compression on G with focus p, and J is a retraction on G with focus u* − *p. Then, for all* $g \in G^+$ *,* $J(g) = 0 \Leftrightarrow J'(g) = g$ *.*

Proof: Let $e \in E$. As $0 \le e \le u$, we have $0 \le J'(e) \le J'(u) = u - p$, whence $J(J'(e)) = 0$. Since *E* generates *G* as a group and $J \circ J'$ is an endomorphism

on *G*, we have $J(J'(g)) = 0$ for all $g \in G$. As *J* is a compression with focus *p*, it follows that $J(e) = 0 \Rightarrow e \le u - p \Rightarrow J'(e) = e$. Now let $g \in G^+$ and write $g = \sum_{i=1}^{n} e_i$ with $e_i \in E$ for $i = 1, 2, ..., n$. If $J(g) = 0$, then $\sum_{i=1}^{n} J(e_i) = 0$ and, since $0 \leq J(e_i)$ for $i = 1, 2, \ldots, n$, it follows that $J(e_i) = 0$ for $i = 1, 2, \ldots, n$, whence $J'(e_i) = e_i$ for $i = 1, 2, ..., n$, and therefore $J'(g) = g$. Conversely, if $J'(g) = g$, then $J(g) = J(J'(g)) = 0$.

A *compressible group* is defined to be a unital group *G* such that (1) every retraction on *G* is uniquely determined by its focus, and (2) if J is a retraction on G , there exists a retraction *J* ' on *G* such that, for all $g \in G^+$, $J(g) = 0 \Leftrightarrow J'(g) = g$ and $J'(g) = 0 \Leftrightarrow J(g) = g$ (Foulis, 2004, Definition 3.3). If *G* is a compressible group, then an element $p \in G$ is called a *projection* iff it is the focus of a retraction on *G*. Suppose that *G* is a compressible group and *P* is the set of all projections in *G*. Then every retraction on *G* is a compression, and if $p \in P$, then the unique retraction (hence compression) on *G* with focus *p* is denoted by J_p . The set *P* is a sub-effect algebra of *E* and, in its own right, it forms an orthomodular poset (OMP) (Foulis, 2003, Corollary 5.2 (iii)).

Example 3. Let *A* be a unital C[∗]-algebra and let *G* be the additive group of all self-adjoint elements in *A*. Then *G* is a unital group with unit 1 and positive cone $G^+ = \{aa^* \mid a \in A\}$. The unital group *G* is a compressible group with $P = \{p \in A\}$ *G* | *p* = p^2 } and, if $p \in P$, then $J_p(g) = pgp$ for all $g \in G$ (Foulis, 2004).

Theorem 1. *Let G be a compressible group with unit u and unit interval E. Then: (i) P is a normal sub-effect algebra of E. (ii)* If $p, q, r \in P$ *with* $p + q + r \le u$, *then* $J_{p+r} \circ J_{q+r} = J_r$.

Proof: (i) By (Foulis, 2003, Corollary 5.2 (ii)), *P* is a sub-effect algebra of *E*. Suppose *e*, *f*, *d* ∈ *E*, *e* + *f* + *d* ≤ *u*, *e* + *d* ∈ *P*, *f* + *d* ∈ *P*, and define $J := J_{e+d} \circ J_{f+d}$. Then $J: G \to G$ is an order-preserving endomorphism and $J(u) = J_{e+d}(J_{f+d}(u)) = J_{e+d}(f+d) = J_{e+d}(f) + J_{e+d}(d)$. But, $e + f + d \le$ $u,$ so $f \le u - (e + d)$, and $d \le e + d$, whence $J(u) = 0 + d = d$. Suppose $h \in E$ with $h \leq d$. Then $h \leq e + d$, $f + d$, and it follows that $J(h) = J_{e+d}(J_{f+d}(h)) =$ $J_{e+d}(h) = h$. Therefore *J* is a retraction with focus *d*, so $d \in P$.

(ii) If $p, q, r \in P$ and $p + q + r \le u$, then by the proof of (i) above with *e* replaced by *p*, *f* replaced by *q*, and *d* replaced by *r*, we have $J_{p+r} \circ J_{q+r} =$ J_r .

3. COMPRESSION BASES

By Theorem 1, the notion of a "compression base," as per the following definition, generalizes the family $(J_p)_{p \in P}$ of compressions in a compressible group.

Definition 2. Let *G* be a unital group with unit interval *E*. A family $(J_p)_{p \in P}$ of compressions on *G*, indexed by a normal sub-effect algebra *P* of *E*, is called a *compression base* for *G* iff (i) each $p \in P$ is the focus of the corresponding compression J_p , and (ii) if $p, q, r \in P$ and $p + q + r \le u$, then $J_{p+r} \circ J_{q+r} = J_r$.

The conditions for a unital group to be a compressible group are quite strong and they rule out many otherwise interesting unital groups. On the other hand, the notion of a unital group *G* with a specified compression base $(J_p)_{p \in P}$ is very general, yet most of the salient properties of projections and compressions for a compressible group generalize, mutatis mutandis, to the elements $p \in P$ and to the compressions J_p in the compression base for G .

Example 4. A retraction *J* on the unital group *G* is *direct* iff $J(g) < g$ for all $g \in G^+$ (Foulis, 2004, Definition 2.6). For instance, the zero mapping $g \mapsto 0$ and the identity mapping $g \mapsto g$ for all $g \in G$ are direct compressions on *G*. Let *P* be the set of all foci of direct retractions on *G*. Then *P* is a sub-effect algebra of the center of *E*. Also, if $p \in P$, there is a unique retraction J_p on *G* with focus *p*, and J_p is a compression. Furthermore, the family $(J_p)_{p \in P}$ is a compression base for *G*.

Standing Assumption. *In the sequel, we assume that G is a unital group with unit u and unit interval E and that* $(J_p)_{p \in P}$ *is a compression base for G.*

Theorem 2. *P is an orthomodular poset and, if* $p \in P$ *and* $g \in G^+$ *, then* $J_p(g)$ = 0 ⇔ $J_{u-p}(g) = g$.

Proof: By (Foulis, 2004, Lemma 2.3 (iv)), every element in *P* is a principal, hence a sharp, element of *E*. Therefore, *P* is an OMP. That $J_p(g) = 0 \Leftrightarrow$ $J_{u-p}(g) = g$ for $p \in P$ and $g \in G^+$ follows from Lemma 1.

Lemma 2. *If* $p, q \in P$ *, then the following conditions are mutually equivalent:* $f(i) \, q \leq p \,$. (ii) $J_p \circ J_q = J_q \,$. (iii) $J_p(q) = q \,$. (iv) $J_q \circ J_p = J_q \,$. (v) $J_q(p) = q \,$.

Proof:

- (i) ⇒ (ii). Assume (i). Then $p q \text{ ∈ } P$ and $(p q) + 0 + q = p \le u$, hence, by Definition 2. (ii), $J_{(p-q)+q} \circ J_{0+q} = J_q$, i.e., $J_p \circ J_q = J_q$.
- (ii) \Rightarrow (iii). Assume (ii). Then $J_p(q) = J_p(J_q(u)) = J_q(u) = q$.
- (iii) \Rightarrow (iv). Assume (iii). Then *q* = *J_p*(*q*) ≤ *p*. Therefore *p* − *q* ∈ *P* and $0 + (p - q) + q = p \le u$; hence, by Definition 2. (ii), $J_{0+q} \circ$ *J*_{(*p*−*q*)+*q*} = *J_q*, i.e., *J_q* ⊙ *J_p* = *J_q*.
- (iv) \Rightarrow (v). Assume (iv). Then $q = J_q(u) = J_q(J_p(u)) = J_q(p)$.
- (v) \Rightarrow (i). Assume (v). Then $J_q(u-p) = q q = 0$, so $u-p = 0$ $J_{u-q}(u-p) = J_{u-q}(u) - J_{u-q}(p) = u - q - J_{u-q}(p)$, i.e., $q+$ *J*_{*u*−*q*}(*p*) = *p*. But $0 \le J_{u-q}(p)$, so $q \le p$.

4. COMPATIBILITY

We maintain our standing assumption that $(J_p)_{p \in P}$ is a compression base for the unital group G with unit u and unit interval E . The notion of compatibility in a compressible group (Foulis, 2003, Definition 4.1) carries over, as follows, to *G*.

Definition 3. If $p \in P$, we define $C(p) := \{ g \in G \mid g = J_p(g) + J_{u-p}(g) \}$. If *g* ∈ $C(p)$, we say that *g* is *compatible* with *p* ∈ *P*. For *p*, *q* ∈ *P*, we often write the condition $q \in C(p)$ in the alternative form qCp .

We devote the remainder of this article to showing that *the fundamental properties of compatibility in a compressible group generalize to a unital group with a compression base.*

Lemma 3. *Let* $p \in P$ *and* $g \in G$ *. Then* $J_p(g) \leq g \Rightarrow g \in C(p)$ *, and* $0 \leq g \in C(p)$ $C(p) \Rightarrow J_p(g) \leq g$.

Proof: Suppose $J_p(g) \leq g$. Then $0 \leq g - J_p(g)$ and $J_p(g - J_p(g)) = J_p(g) J_p(g) = 0$, whence $g - J_g(g) = J_{u-p}(g - J_p(g)) = J_{u-p}(g) - 0 = J_{u-p}(g)$, i.e., *g* = *J_p*(*g*) + *J_{u−p}*(*g*), and therefore, *g* ∈ *C*(*p*). Conversely, if 0 ≤ *g* ∈ *C*(*p*), then $0 \leq J_{u-g}(g)$, whence $J_p(g) \leq J_p(g) + J_{u-p}(g) = g$.

Theorem 3. Let $p, q \in P$. Then the following conditions are mutually equiva*lent: (i)* $J_p \circ J_q = J_q \circ J_p$ *. (ii)* $J_p(q) = J_q(p)$ *. (iii)* $J_p(q) \leq q$ *. (iv) p is Mackey compatible with q in E.* (*v*) *p is Mackey compatible with q in P.* (*vi*) \exists *r* \in $P, J_p \circ J_q = J_r$. (vii) $J_p(q) \in P$. (viii) qCp .

Proof:

- (i) ⇒ (ii). If (i) holds, then $J_p(q) = J_p(J_q(u)) = J_q(J_p(u)) = J_q(p)$.
- (ii) \Rightarrow (iii). If (ii) holds, then $J_p(q) = J_q(p) \leq q$.
- (iii) \Rightarrow (iv). Let $r := J_p(q)$ and assume that $r \leq q$. Then $0 \leq r \leq p, q$, whence $e := p - r \in E$ and $f := q - r \in E$ with $e + r = p$ and $f + r = q$. As $J_p(f) = J_p(q - r) = r - r = 0$, we have $f \le u - r$ *p*, whence $e + f + r = f + p \le u$, and it follows the *p* is Mackey compatible with *q* in *E*.
- (iv) \Rightarrow (v). As *P* is a normal sub-effect algebra of *E*, we have (iv) \Rightarrow (v).
- (v) \Rightarrow (vi). If (v) holds, there exist *e*, *f*, *r* \in *P* with $e + f + r \le u$, $p = e + r$ and $q = f + r$. Therefore, by Definition 2. (ii), $J_p \circ J_q =$ $J_{e+r} \circ J_{f+r} = J_r.$
- (vi) \Rightarrow (vii). Suppose that $r \in P$ and $J_p \circ J_q = J_r$. Then $J_p(q) =$ $J_p(J_q(u)) = J_r(u) = r \in P$.
- (vii) \Rightarrow (viii) Assume (vii) and let *r* := *J_p*(*q*) ∈ *P*. Then *J_r*(*q*) ≤ *r* ≤ *p*, so 0 ≤ *r* − *J_r*(*q*). Thus, by Lemma 2, *r* − *J_r*(*q*) = *r* − (*J_r* ◦ J_p $(q) = r - J_r$ $(J_p(q)) = r - J_r(r) = r - r = 0$, i.e., $r = J_r(q)$.

Therefore, $J_r(u - q) = r - r = 0$, so $u - q \le u - r$, i.e., $r \le q$, and it follows from Lemma 3 that *pCq*.

(viii) \Rightarrow (i). Assume that *qCp*. Then, by Lemma 3, $J_p(q) \leq q$, so (iii) holds. We have already shown that (iii) \Rightarrow (iv) \Rightarrow (*v*), so there exist $e, f, r \in P$ with $e + f + r \le u, p = e + r$, and $q = f + r$. Therefore, by Definition 2. (ii), $J_p \circ J_q = J_{e+r} \circ J_{f+r} = J_r = J_{f+r} \circ J_{f+r}$ $J_{e+r} = J_q \circ J_p.$

Because conditions (i), (ii), (iv), and (v) in Theorem 3 are symmetric in *p* and q, so are conditions (iii), (vi), (vii), and (viii). In particular, for $p, q \in P$, we have $pCq \Leftrightarrow qCp$.

Corollary 1. Let $p, q \in P$ and suppose that pCq . Then $J_q(p) = J_p(q) = p \wedge q$ *is the greatest lower bound of p and q both in E and in P, and* $J_p \circ J_q = J_q \circ J_p$ $J_{p\wedge q}$.

Proof: Suppose that $p, q \in P$ and pCq . By Theorem 3, there exists $r \in P$ with $J_p \circ J_q = J_q \circ J_p = J_r$. Thus, $r = J_p(J_q(u)) = J_p(q) = J_q(p) \le p, q$. If $e \in E$ with $e \leq p, q$, then $e = J_p(J_q(e)) = J_r(e) \leq r$, so *r* is the greatest lower bound of *p* and *q* in *E*, hence also in *P*.

Theorem 4. *Let* $v \in P$ *and define* $H := J_v(G)$ *,* $E_H := \{e \in E \mid e \leq v\}$ *, and* $P_H := \{q \in P \mid q \le v\}$ *. For each* $q \in P_H$ *, let* J_q^H *be the restriction of* J_q *to H. Then: (i) With the induced partial order,* $H = \{h \in G \mid h = J_v(h)\}\$ *is a unital group with unit v and unit interval* $H \cap E = E_H$ *. (ii)* $H \cap P = P_H$ *, and if* $q \in P_H$ *, then* J_q^H *is a compression on* H *. (iii)* P_H *is a normal sub-effect algebra of* E_H *.* (iv) $(J_q^H)_{q \in P_H}$ is a compression base for H .

Proof:

- (i) By (Foulis, 2003, Lemma 2.4), H is a unital group with unit v and unit interval *H* ∩ *E*. As *J_v* is idempotent, *H* = { h ∈ *G* | h = *J_v*(h)}. Thus, for $e \in E$, $e \leq v \Leftrightarrow e = J_v(e) \Leftrightarrow e \in H$, whence $H \cap E =$ ${e \in E \mid e \leq v}.$
- (ii) As $P \subseteq E$, we have $H \cap P = P_H$. If $h \in H$ and $q \in P_H$, then by Lemma 2, $J_q(h) = J_v(J_q(h)) \in H$. Therefore $J_q^H: H \to H$ is an order-preserving group endomorphism, and by Lemma 2 again, $J_q^H(v) = J_q(v) = q$. Also, if $e \in E_H$ with $e \le q$, then $J_q^H(e) =$ $J_q(e) = e$, so J_q^H is a retraction on *H*. Suppose $e \in E_H$ and $J_q^H(e) = 0$. Then $e \le u - q$, so $e + q \le u$. By (Foulis, 2004, Lemma 2.3 (iv)), *v* is a principal element of *E*, hence, since $0 \le e, q \le v$, it

follows that $e + q \le v$, i.e., $e \le v - q$. Hence, J_q^H is a compression on *H*.

- (iii) Suppose $e, f, d \in E_H$, $e + f + d \leq v$, and $e + d, f + d \in P_H$. Then *e*, $f, d \in E$, $e + f + d \le v \le u$, and $e + d, f + d \in P$. As *P* is a normal sub-effect algebra of *E*, it follows that $d \in P$. But $d \leq v$, so $d \in P_H$.
- (iv) Suppose *s*, *t*, $r \in P$ *H* with $s + t + r \le v$. Then *s*, $t, r \in P$ with $s +$ $t + r \le u$, whence $J_{s+r} \circ J_{t+r} = J_r$, and it follows that $J_{s+r}^H \circ J_{t+r}^H =$ J^H . *r r* . □

Theorem 5. *Let* $v \in P$ *and define* $C := C(v)$ *. For each* $s \in C \cap P$ *, let* J_s^C *be the restriction of Js to C. Then: (i) With the induced partial order, C is a unital group with unit u and unit interval* $C \cap E = \{e + f \mid e, f \in E, e \le v, f \le u - v\}$ *. (ii) If* $s \in C \cap P$, then J_s^C *is a compression on C. (iii)* $C \cap P$ *is a normal sub-effect algebra of* $C \cap E$ *. (iv)* $(J_s^C)_{s \in C \cap P}$ *is a compression base for* C *.*

Proof: Part (i) follows from (Foulis, 2003, Lemma 4.2 (iv)), part (iii) is obvious, and part (iv) is easily confirmed once part (ii) is proved. To prove part (ii), assume that $g \in C = C(v)$ and $s \in P \cap C$. Then, by Lemma 2, $J_s^C(g) = J_s(J_v(g) + J_{u-v}(g)) = J_s(J_v(g)) + J_s(J_{u-v}(g)) =$ $J_{v}(J_{s}(g)) + J_{u-v}(J_{s}(g))$, so $J_{s}^{C}(g) = J_{s}(g) \in C(v) = C$. Therefore $J_{s}^{C}: C \to C$ is an order-preserving group endomorphism, hence it is obviously a compression on C .

Definition 4. If C and *W* are unital groups with units u and w , respectively, and if $(J_q^C)_{q \in Q}$ and $(J_t^W)_{t \in T}$ are compression bases in *C* and *W*, respectively, then an order-preserving group homomorphism $\phi: C \rightarrow W$ is called a *morphism of unital groups with compression bases* iff $\phi(u) = w$, $\phi(Q) \subseteq T$, and $J_{\phi(q)}^W \circ \phi = \phi \circ J_q^C$ for all $q \in Q$.

We omit the straightforward proof of the following theorem.

Theorem 6. *Suppose* $v \in P$ *and define* $H := J_v(G)$ *,* $K := J_{u-v}(G)$ *, and* $C :=$ $C(v)$. Organize H , K , and C *into unital groups with compression bases* $(J_q^H)_{q \in P_H}$, $(J_r^K)_{r \in P_K}$, and $(J_s^C)_{s \in C \cap P}$, respectively, as in Theorems 4 and 5. Let η be the *restriction to C of* J_v *and let* κ *be the restriction to C of* J_{u-v} *. Then* $\eta: C \to H$ $and \kappa: C \to K$ *are surjective morphisms of unital groups with compression bases and, in the category of unital groups with compression bases, η and κ provide a representation of C as a direct product of H and K.*

In subsequent papers we shall prove that all of the major results in (Foulis, 2003, 2004, 2005) can be generalized to unital groups with compression bases.

REFERENCES

- Bennett, M. K. and Foulis, D. J. (1997). Interval and scale effect algebras. *Advances in Applied Mathematics* **19**, 200–215.
- Foulis, D. J. (2003). Compressible groups. *Mathematica Slovaca* **53**(5), 433–455.
- Foulis, D. J. (2004). Compressions on partially ordered abelian groups. *Proceedings of the American Mathematical Society* **132**, 3581–3587.
- Foulis, D. J. (2005). Spectral resolution in a Rickart Comgroup, *Reports on Mathematical Physics* **54**(2), 319–340.
- Foulis, D. J. (2005) Compressible groups with general comparability, *Mathematica Slovaca* **55**, in press.
- Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. *Foundations of Physics* **24**(10), 1325–1346.
- Greechie, R. J., Foulis, D. J., and Pulmannová, S. (1995). The center of an effect algebra. *Order* 12, 91–106.
- Goodearl, K. (1986). *Partially Ordered Abelian Groups With Interpolation*, American Mathematical Society Mathematical Surveys and Monographs No. 20, American Mathematical Society, Providence, RI.