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Compression Bases in Unital Groups

David J. Foulis1

We introduce and launch a study of compression bases in unital groups. The family
of all compressions on a compressible group and the family of all direct compressions
on a unital group are examples of compression bases. In this article we show that the
properties of the compatibility relation in a compressible group generalize to unital
groups with compression bases.
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1. NORMAL SUB-EFFECT ALGEBRAS

If E is an effect algebra (Foulis and Bennett, 1994), then a Mackey decom-
position in E of the ordered pair (e, f ) ∈ E × E is an ordered triple (e1, f1, d) ∈
E × E × E such that e1 ⊥ f1, (e1 ⊕ f1) ⊥ d, e = e1 ⊕ d, and f = f1 ⊕ d. If
there exists a Mackey decomposition in E of (e, f ) ∈ E × E, then e and f are
said to be Mackey compatible in E.

Definition 1. Let P be a sub-effect algebra of the effect algebra E (Foulis and
Bennett, 1994, Definition 2.6). Then P is a normal sub-effect algebra of E iff,
for all e, f ∈ P , if (e1, f1, d) ∈ E × E × E is a Mackey decomposition in E of
(e, f ), then d ∈ P .

Suppose that E is an effect algebra, P is a sub-effect algebra of E, e, f ∈ P ,
and (e1, f1, d) ∈ E × E × E is a Mackey decomposition of (e, f ) in E. Then e

and f are Mackey compatible in E, but not necessarily in P . However, if P is a
normal sub-effect algebra of E, then d ∈ P and, since e1 ⊕ d = e, f1 ⊕ d = f ,
and d, e, f ∈ P , it follows that e1, f1 ∈ P , whence (e1, f1, d) ∈ P × P × P is
a Mackey decomposition in P of (e, f ). Therefore, if P is a normal sub-effect
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algebra of E and e, f ∈ P , then e and f are Mackey compatible in E iff e and f

are Mackey compatible in P .

Example 1. The center of an effect algebra E (Greechie et al., 1995 ) is a normal
sub-effect algebra of E.

Recall that G is a unital group with unit u and unit interval E iff G is a
directed partially ordered abelian group (Goodearl, 1986), such that u ∈ G+ :=
{g ∈ G | 0 ≤ g}, E := {e ∈ G | 0 ≤ e ≤ u}, and every element g ∈ G+ can be
written as g = �n

i=1ei with ei ∈ E for i = 1, 2, . . . , n (Foulis, 2003, p. 436). (The
symbol := means “equals by definition.”)

Suppose that G is a unital group with unit u and unit interval E. Then E is an
effect algebra with unit u under the partially defined binary operation ⊕ obtained
be restriction of + on G to E (Bennett and Foulis, 1997). We note that a sub-effect
algebra P of E is a normal sub-effect algebra of E iff, for all e, f, d ∈ E with
e + f + d ≤ u, we have e + d, f + d ∈ P ⇒ d ∈ P .

Example 2. Let H be a Hilbert space. Then the additive abelian group G of all
bounded self-adjoint operators on H, partially ordered in the usual way, is a unital
group with unit 1. The unit interval E in G is the standard effect algebra of all
effect operators on H, and the orthomodular lattice P of all projection operators
on H is a normal sub-effect algebra of E.

2. RETRACTIONS AND COMPRESSIONS

Let G be a unital group with unit u and unit interval E. A retraction on G

with focus p is defined to be an order-preserving group endomorphism J : G → G

with p = J (u) ∈ E such that, for all e ∈ E, e ≤ p ⇒ J (e) = e. A retraction J on
G with focus p is called a compression on G iff J (e) = 0 ⇒ e ≤ u − p holds for
all e ∈ E (Foulis, 2004).

The unital group G always admits at least two compressions, namely the
zero mapping, g �→ 0 for all g ∈ G and the identity mapping g �→ g for all
g ∈ G. Suppose J is a retraction with focus p on G. Then, J is idempotent (i.e.,
J ◦ J = J ) and J (p) = p. Also, for all e ∈ E, e ≤ u − p ⇒ J (e) = 0 and, if J

is a compression, then e ≤ u − p ⇔ J (e) = 0 (Foulis, 2004).

Lemma 1. Let G be a unital group with unit u and unit interval E. Suppose
that J is a compression on G with focus p, and J ′ is a retraction on G with focus
u − p. Then, for all g ∈ G+, J (g) = 0 ⇔ J ′(g) = g.

Proof: Let e ∈ E. As 0 ≤ e ≤ u, we have 0 ≤ J ′(e) ≤ J ′(u) = u − p, whence
J (J ′(e)) = 0. Since E generates G as a group and J ◦ J ′ is an endomorphism
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on G, we have J (J ′(g)) = 0 for all g ∈ G. As J is a compression with focus p,
it follows that J (e) = 0 ⇒ e ≤ u − p ⇒ J ′(e) = e. Now let g ∈ G+ and write
g = �n

i=1ei with ei ∈ E for i = 1, 2, . . . , n. If J (g) = 0, then �n
i=1J (ei) = 0 and,

since 0 ≤ J (ei) for i = 1, 2, . . . , n, it follows that J (ei) = 0 for i = 1, 2, . . . , n,
whence J ′(ei) = ei for i = 1, 2, . . . , n, and therefore J ′(g) = g. Conversely, if
J ′(g) = g, then J (g) = J (J ′(g)) = 0. �

A compressible group is defined to be a unital group G such that (1) every
retraction on G is uniquely determined by its focus, and (2) if J is a retraction on G,
there exists a retraction J ′ on G such that, for all g ∈ G+, J (g) = 0 ⇔ J ′(g) = g

and J ′(g) = 0 ⇔ J (g) = g (Foulis, 2004, Definition 3.3). If G is a compressible
group, then an element p ∈ G is called a projection iff it is the focus of a retraction
on G. Suppose that G is a compressible group and P is the set of all projections
in G. Then every retraction on G is a compression, and if p ∈ P , then the unique
retraction (hence compression) on G with focus p is denoted by Jp. The set P

is a sub-effect algebra of E and, in its own right, it forms an orthomodular poset
(OMP) (Foulis, 2003, Corollary 5.2 (iii)).

Example 3. Let A be a unital C∗-algebra and let G be the additive group of all
self-adjoint elements in A. Then G is a unital group with unit 1 and positive cone
G+ = {aa∗ | a ∈ A}. The unital group G is a compressible group with P = {p ∈
G | p = p2} and, if p ∈ P , then Jp(g) = pgp for all g ∈ G (Foulis, 2004).

Theorem 1. Let G be a compressible group with unit u and unit interval E. Then:
(i) P is a normal sub-effect algebra of E. (ii) If p, q, r ∈ P with p + q + r ≤ u,
then Jp+r ◦ Jq+r = Jr .

Proof: (i) By (Foulis, 2003, Corollary 5.2 (ii)), P is a sub-effect algebra
of E. Suppose e, f, d ∈ E, e + f + d ≤ u, e + d ∈ P , f + d ∈ P , and define
J := Je+d ◦ Jf +d . Then J : G → G is an order-preserving endomorphism and
J (u) = Je+d (Jf +d (u)) = Je+d (f + d) = Je+d (f ) + Je+d (d). But, e + f + d ≤
u, so f ≤ u − (e + d), and d ≤ e + d, whence J (u) = 0 + d = d. Suppose h ∈ E

with h ≤ d. Then h ≤ e + d, f + d, and it follows that J (h) = Je+d (Jf +d (h)) =
Je+d (h) = h. Therefore J is a retraction with focus d, so d ∈ P .

(ii) If p, q, r ∈ P and p + q + r ≤ u, then by the proof of (i) above with
e replaced by p, f replaced by q, and d replaced by r , we have Jp+r ◦ Jq+r =
Jr . �

3. COMPRESSION BASES

By Theorem 1, the notion of a “compression base,” as per the following
definition, generalizes the family (Jp)p∈P of compressions in a compressible
group.
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Definition 2. Let G be a unital group with unit interval E. A family (Jp)p∈P

of compressions on G, indexed by a normal sub-effect algebra P of E, is called
a compression base for G iff (i) each p ∈ P is the focus of the corresponding
compression Jp, and (ii) if p, q, r ∈ P and p + q + r ≤ u, then Jp+r ◦ Jq+r = Jr .

The conditions for a unital group to be a compressible group are quite strong
and they rule out many otherwise interesting unital groups. On the other hand,
the notion of a unital group G with a specified compression base (Jp)p∈P is very
general, yet most of the salient properties of projections and compressions for a
compressible group generalize, mutatis mutandis, to the elements p ∈ P and to
the compressions Jp in the compression base for G.

Example 4. A retraction J on the unital group G is direct iff J (g) ≤ g for all
g ∈ G+ (Foulis, 2004, Definition 2.6). For instance, the zero mapping g �→ 0 and
the identity mapping g �→ g for all g ∈ G are direct compressions on G. Let P be
the set of all foci of direct retractions on G. Then P is a sub-effect algebra of the
center of E. Also, if p ∈ P , there is a unique retraction Jp on G with focus p, and
Jp is a compression. Furthermore, the family (Jp)p∈P is a compression base for G.

Standing Assumption. In the sequel, we assume that G is a unital group with
unit u and unit interval E and that (Jp)p∈P is a compression base for G.

Theorem 2. P is an orthomodular poset and, if p ∈ P and g ∈ G+, then Jp(g) =
0 ⇔ Ju−p(g) = g.

Proof: By (Foulis, 2004, Lemma 2.3 (iv)), every element in P is a princi-
pal, hence a sharp, element of E. Therefore, P is an OMP. That Jp(g) = 0 ⇔
Ju−p(g) = g for p ∈ P and g ∈ G+ follows from Lemma 1. �

Lemma 2. If p, q ∈ P , then the following conditions are mutually equivalent:
(i) q ≤ p. (ii) Jp ◦ Jq = Jq . (iii) Jp(q) = q. (iv) Jq ◦ Jp = Jq . (v) Jq(p) = q.

Proof:
(i) ⇒ (ii). Assume (i). Then p − q ∈ P and (p − q) + 0 + q = p ≤ u,

hence, by Definition 2. (ii), J(p−q)+q ◦ J0+q = Jq , i.e., Jp ◦ Jq = Jq .
(ii) ⇒ (iii). Assume (ii). Then Jp(q) = Jp(Jq(u)) = Jq(u) = q.

(iii) ⇒ (iv). Assume (iii). Then q = Jp(q) ≤ p. Therefore p − q ∈ P

and 0 + (p − q) + q = p ≤ u; hence, by Definition 2. (ii), J0+q ◦
J(p−q)+q = Jq , i.e., Jq ◦ Jp = Jq .

(iv) ⇒ (v). Assume (iv). Then q = Jq(u) = Jq(Jp(u)) = Jq(p).
(v) ⇒ (i). Assume (v). Then Jq(u − p) = q − q = 0, so u − p =

Ju−q(u − p) = Ju−q(u) − Ju−q(p) = u − q − Ju−q(p), i.e., q +
Ju−q(p) = p. But 0 ≤ Ju−q(p), so q ≤ p. �
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4. COMPATIBILITY

We maintain our standing assumption that (Jp)p∈P is a compression base for
the unital group G with unit u and unit interval E. The notion of compatibility in
a compressible group (Foulis, 2003, Definition 4.1) carries over, as follows, to G.

Definition 3. If p ∈ P , we define C(p) := {g ∈ G | g = Jp(g) + Ju−p(g)}. If
g ∈ C(p), we say that g is compatible with p ∈ P . For p, q ∈ P , we often write
the condition q ∈ C(p) in the alternative form qCp.

We devote the remainder of this article to showing that the fundamental
properties of compatibility in a compressible group generalize to a unital group
with a compression base.

Lemma 3. Let p ∈ P and g ∈ G. Then Jp(g) ≤ g ⇒ g ∈ C(p), and 0 ≤ g ∈
C(p) ⇒ Jp(g) ≤ g.

Proof: Suppose Jp(g) ≤ g. Then 0 ≤ g − Jp(g) and Jp(g − Jp(g)) = Jp(g) −
Jp(g) = 0, whence g − Jg(g) = Ju−p(g − Jp(g)) = Ju−p(g) − 0 = Ju−p(g), i.e.,
g = Jp(g) + Ju−p(g), and therefore, g ∈ C(p). Conversely, if 0 ≤ g ∈ C(p), then
0 ≤ Ju−g(g), whence Jp(g) ≤ Jp(g) + Ju−p(g) = g. �

Theorem 3. Let p, q ∈ P . Then the following conditions are mutually equiva-
lent: (i) Jp ◦ Jq = Jq ◦ Jp. (ii) Jp(q) = Jq(p). (iii) Jp(q) ≤ q. (iv) p is Mackey
compatible with q in E. (v) p is Mackey compatible with q in P . (vi) ∃r ∈
P, Jp ◦ Jq = Jr . (vii) Jp(q) ∈ P . (viii) qCp.

Proof:
(i) ⇒ (ii). If (i) holds, then Jp(q) = Jp(Jq(u)) = Jq(Jp(u)) = Jq(p).

(ii) ⇒ (iii). If (ii) holds, then Jp(q) = Jq(p) ≤ q.
(iii) ⇒ (iv). Let r := Jp(q) and assume that r ≤ q. Then 0 ≤ r ≤ p, q,

whence e := p − r ∈ E and f := q − r ∈ E with e + r = p and
f + r = q. As Jp(f ) = Jp(q − r) = r − r = 0, we have f ≤ u −
p, whence e + f + r = f + p ≤ u, and it follows the p is Mackey
compatible with q in E.

(iv) ⇒ (v). As P is a normal sub-effect algebra of E, we have (iv) ⇒ (v).
(v) ⇒ (vi). If (v) holds, there exist e, f, r ∈ P with e + f + r ≤ u,

p = e + r and q = f + r . Therefore, by Definition 2. (ii), Jp ◦ Jq =
Je+r ◦ Jf +r = Jr .

(vi) ⇒ (vii). Suppose that r ∈ P and Jp ◦ Jq = Jr . Then Jp(q) =
Jp(Jq(u)) = Jr (u) = r ∈ P .

(vii) ⇒ (viii) Assume (vii) and let r := Jp(q) ∈ P . Then Jr (q) ≤ r ≤
p, so 0 ≤ r − Jr (q). Thus, by Lemma 2, r − Jr (q) = r − (Jr ◦
Jp)(q) = r − Jr (Jp(q)) = r − Jr (r) = r − r = 0, i.e., r = Jr (q).
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Therefore, Jr (u − q) = r − r = 0, so u − q ≤ u − r , i.e., r ≤ q, and
it follows from Lemma 3 that pCq.

(viii) ⇒ (i). Assume that qCp. Then, by Lemma 3, Jp(q) ≤ q, so (iii)
holds. We have already shown that (iii) ⇒ (iv) ⇒ (v), so there exist
e, f, r ∈ P with e + f + r ≤ u, p = e + r , and q = f + r . There-
fore, by Definition 2. (ii), Jp ◦ Jq = Je+r ◦ Jf +r = Jr = Jf +r ◦
Je+r = Jq ◦ Jp. �

Because conditions (i), (ii), (iv), and (v) in Theorem 3 are symmetric in p

and q, so are conditions (iii), (vi), (vii), and (viii). In particular, for p, q ∈ P , we
have pCq ⇔ qCp.

Corollary 1. Let p, q ∈ P and suppose that pCq. Then Jq(p) = Jp(q) = p ∧ q

is the greatest lower bound of p and q both in E and in P , and Jp ◦ Jq = Jq ◦ Jp =
Jp∧q .

Proof: Suppose that p, q ∈ P and pCq. By Theorem 3, there exists r ∈ P with
Jp ◦ Jq = Jq ◦ Jp = Jr . Thus, r = Jp(Jq(u)) = Jp(q) = Jq(p) ≤ p, q. If e ∈ E

with e ≤ p, q, then e = Jp(Jq(e)) = Jr (e) ≤ r , so r is the greatest lower bound
of p and q in E, hence also in P . �

Theorem 4. Let v ∈ P and define H := Jv(G), EH := {e ∈ E | e ≤ v}, and
PH := {q ∈ P | q ≤ v}. For each q ∈ PH , let JH

q be the restriction of Jq to
H . Then: (i) With the induced partial order, H = {h ∈ G | h = Jv(h)} is a unital
group with unit v and unit interval H ∩ E = EH . (ii) H ∩ P = PH , and if q ∈ PH ,
then JH

q is a compression on H . (iii) PH is a normal sub-effect algebra of EH .
(iv) (JH

q )q∈PH
is a compression base for H .

Proof:
(i) By (Foulis, 2003, Lemma 2.4), H is a unital group with unit v and

unit interval H ∩ E. As Jv is idempotent, H = {h ∈ G | h = Jv(h)}.
Thus, for e ∈ E, e ≤ v ⇔ e = Jv(e) ⇔ e ∈ H , whence H ∩ E =
{e ∈ E | e ≤ v}.

(ii) As P ⊆ E, we have H ∩ P = PH . If h ∈ H and q ∈ PH , then
by Lemma 2, Jq(h) = Jv(Jq(h)) ∈ H . Therefore JH

q : H → H is an
order-preserving group endomorphism, and by Lemma 2 again,
JH

q (v) = Jq(v) = q. Also, if e ∈ EH with e ≤ q, then JH
q (e) =

Jq(e) = e, so JH
q is a retraction on H . Suppose e ∈ EH and

JH
q (e) = 0. Then e ≤ u − q, so e + q ≤ u. By (Foulis, 2004, Lemma

2.3 (iv)), v is a principal element of E, hence, since 0 ≤ e, q ≤ v, it
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follows that e + q ≤ v, i.e., e ≤ v − q. Hence, JH
q is a compression

on H .
(iii) Suppose e, f, d ∈ EH , e + f + d ≤ v, and e + d, f + d ∈ PH .

Then e, f, d ∈ E, e + f + d ≤ v ≤ u, and e + d, f + d ∈ P . As
P is a normal sub-effect algebra of E, it follows that d ∈ P . But
d ≤ v, so d ∈ PH .

(iv) Suppose s, t, r ∈ PH with s + t + r ≤ v. Then s, t, r ∈ P with s +
t + r ≤ u, whence Js+r ◦ Jt+r = Jr , and it follows that JH

s+r ◦ JH
t+r =

JH
r . �

Theorem 5. Let v ∈ P and define C := C(v). For each s ∈ C ∩ P , let JC
s be the

restriction of Js to C. Then: (i) With the induced partial order, C is a unital group
with unit u and unit interval C ∩ E = {e + f | e, f ∈ E, e ≤ v, f ≤ u − v}. (ii)
If s ∈ C ∩ P , then JC

s is a compression on C. (iii) C ∩ P is a normal sub-effect
algebra of C ∩ E. (iv) (JC

s )s∈C∩P is a compression base for C.

Proof: Part (i) follows from (Foulis, 2003, Lemma 4.2 (iv)), part
(iii) is obvious, and part (iv) is easily confirmed once part (ii) is
proved. To prove part (ii), assume that g ∈ C = C(v) and s ∈ P ∩ C.
Then, by Lemma 2, JC

s (g) = Js(Jv(g) + Ju−v(g)) = Js(Jv(g)) + Js(Ju−v(g)) =
Jv(Js(g)) + Ju−v(Js(g)), so JC

s (g) = Js(g) ∈ C(v) = C. Therefore JC
s : C → C

is an order-preserving group endomorphism, hence it is obviously a compression
on C. �

Definition 4. If C and W are unital groups with units u and w, respectively, and
if (JC

q )q∈Q and (JW
t )t∈T are compression bases in C and W , respectively, then an

order-preserving group homomorphism φ: C → W is called a morphism of unital
groups with compression bases iff φ(u) = w, φ(Q) ⊆ T , and JW

φ(q) ◦ φ = φ ◦ JC
q

for all q ∈ Q.
We omit the straightforward proof of the following theorem.

Theorem 6. Suppose v ∈ P and define H := Jv(G), K := Ju−v(G), and C :=
C(v). Organize H , K , and C into unital groups with compression bases (JH

q )q∈PH
,

(JK
r )r∈PK

, and (JC
s )s∈C∩P , respectively, as in Theorems 4 and 5. Let η be the

restriction to C of Jv and let κ be the restriction to C of Ju−v . Then η: C → H

and κ: C → K are surjective morphisms of unital groups with compression bases
and, in the category of unital groups with compression bases, η and κ provide a
representation of C as a direct product of H and K .

In subsequent papers we shall prove that all of the major results in
(Foulis, 2003, 2004, 2005) can be generalized to unital groups with compression
bases.
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